Analysis of a physically-relevant variable-order time-fractional reaction–diffusion model with Mittag-Leffler kernel

نویسندگان

چکیده

It is known that the well-posedness of time-fractional reaction–diffusion models with Mittag-Leffler kernel usually requires non-physical constraints on initial data. In this paper, we propose a variable-order equation and prove aforementioned could be eliminated by imposing integer limit variable fractional order at time, which mathematically demonstrates physically-relevance modifications.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mittag-Leffler stability of fractional order nonlinear dynamic systems

In this paper we propose the definition of Mittag-Leffler stability and introduce the fractional Lyapunov direct method. Then we provide the fractional comparison principle. Third, we extend the application of Riemann-Liouville fractional systems by using Caputo fractional systems. Finally, an illustrative example is provided as a proof of concept. keywords Fractional order dynamic system, Nona...

متن کامل

Mittag-Leffler stability analysis of fractional-order fuzzy Cohen-Grossberg neural networks with deviating argument

*Correspondence: [email protected] 2College of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, China 3Institute for Information and System Science, Xi’an Jiaotong University, Xi’an, 710049, China Full list of author information is available at the end of the article Abstract This paper is concerned with the Mittag-Leffler stability of fractional-order fuzzy Cohen-Grossberg ...

متن کامل

A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel

In this article, we extend fractional operators with nonsingular Mittag-Leffler kernels, a study initiated recently by Atangana and Baleanu, from order [Formula: see text] to higher arbitrary order and we formulate their correspondent integral operators. We prove existence and uniqueness theorems for the Caputo ([Formula: see text]) and Riemann ([Formula: see text]) type initial value problems ...

متن کامل

The mean value theorem and Taylor’s theorem for fractional derivatives with Mittag–Leffler kernel

*Correspondence: [email protected] 1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK Full list of author information is available at the end of the article Abstract We establish analogues of the mean value theorem and Taylor’s theorem for fractional differential operators defined using a Mittag–Leffler kernel. We formulate a new model for the fract...

متن کامل

Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown control coefficients

*Correspondence: [email protected] Department of Education Science, Pingxiang University, Pingxiang, 337055, People’s Republic of China Abstract In this paper, we consider the problem of Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown control coefficients. With the help of backstepping design method, the stabilizing functions and tuning functions are construct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2021

ISSN: ['1873-5452', '0893-9659']

DOI: https://doi.org/10.1016/j.aml.2020.106804